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Foreword
 
This report is the outcome of a project initiated by the Personalised Healthcare Catalyst. 
The PHC Catalyst Alliance started in 2018 with the mission to accelerate the transition towards 
personalised healthcare (PHC), as rapid progress in biomedical, data science and AI create new 
insights into health and disease that enable us to transform patient’s lives by delivering care tailored to 
the individual, thereby helping to prevent, diagnose, and treat patients more effectively and quickly. 

Though the progress in the various scientific areas is impressive, we do not fully enjoy the benefits 
yet, primarily due to the barriers in the receiving environment, in particular the way we currently 
have organized our healthcare system. In other words, science is running faster than its framework. 

The PHC Catalyst Alliance is a ‘coalition of the willing’; it is a multi-disciplinary group of 
professionals, each experts and innovators in their fields, who are united in their vision and ambition 
to create a healthcare system without barriers for PHC. This will allow healthcare to evolve from 
reactive ‘one-size-fits-all’ disease care towards proactive personalised healthcare, and will allow 
consumers to use personalised health information to improve their health as they observe the 
impact of their lifestyle decisions. 

In 2020, the Personalised Healthcare Catalyst Foundation was established, a legal entity with the 
same purpose as the alliance. We look for opportunities to highlight and accelerate progress, and 
initiate and support projects to do so. We apply the methods of ‘Combinatoric Innovation’, which 
means that we do not reinvent the wheel, but focus on what is already out there and connect 
people, organisations, knowledge and data to demonstrate the value of PHC, shift mindsets, and 
break down implementation barriers. 

This report is dedicated to one of these projects. Actually, this is how the PHC Catalyst started off, 
with an idea to perform a datahackathon to develop a pre-treatment predictive model for immunotherapy  
in patients with lungcancer, based on the combination and analysis of data from various sources. 
ImmuunPRO Hackathon focuses on transforming the fight against cancer using Big Data & AI. 
Immunotherapy is a major scientific breakthrough in cancer treatment with the potential to change 
cancer in a chronic condition with a good quality of life. Currently only a small percentage of 
patients with metastatic cancer has a durable response. The key question is: Who will benefit from 
immunotherapy? In other words: why does one person have a durable response and the other not? 
This type of knowledge will eventually help us to further improve treatment. 

Interestingly, it turned out that finding, accessing and combining data sources, were challenges by 
themselves. This proves the point that reshaping the system with its shared, but also individual and 
conflicting ambitions and interests, is key. I therefore compliment and thank all involved in this 
project, not only for the scientific work they have done, but also for the stamina to convince people 
and organisations that it is worthwhile to share and participate.

This report is one in a series that we are developing and hope that the results will inspire people to further 
develop and implement the knowledge that has been acquired during the process. But we also hope that 
more people and more organisations will work together on changing the society and the healthcare 
system in particular, to make personalised healthcare affordable and accessible for everyone. 

United we stand, departed we fall! 

Kind regards, Paul Iske, Chairman PHC Catalyst 
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1  Executive summary

Who will benefit from immunotherapy?1 
Cancer immunotherapy is a significant improvement in the treatment of cancer. Novel patterns of 
response and progression to immunotherapy have been reported, that are not observed with 
conventional cytotoxic or targeted anticancer treatments. The major breakthrough with 
immunotherapy is its potential to achieve durable responses in a subset of patients with advanced 
cancer that can be maintained several years even after stopping the treatment. However, a 
substantial proportion of patients does not respond to immunotherapy. 

Immunotherapy drugs called immune checkpoint inhibitors (ICI) work by blocking checkpoint 
proteins that are made by some type of immune system cells, such as T cells, and some cancer 
cells. These checkpoints help keep immune responses from being too strong and sometimes keep 
T cells from killing cancer cells. When these checkpoints are blocked, T cells can kill cancer cells 
better. Examples of checkpoint proteins found on T cells or cancer cells include PD-1/PD-L1. 

When doctors and patients consider ICI treatment, the survival outcome is uncertain. Theoretically, 
patients with high PD-1/PD-L1 expression levels are more likely to respond to PD-1/PD-L1 inhibitors 
that block the activity of PD-1/PD-L1 immune checkpoint proteins. However, in clinical practice 
patient outcomes vary considerably. This raises the question about a potential role of PD-1/PD-L1 
expression as predictive biomarker for the selection of patients to treat with ICIs. A pre-treatment 
predictive model for survival outcome may be useful for the provision of more personalized 
expectations of survival outcomes, which may inform treatment choices and contribute to a higher 
quality of life.

Experimental design 
This experiment aimed to develop and validate a pre-treatment predictive model for survival 
outcomes in advanced non-small cell lung cancer (NSCLC) patients treated with ICIs. 

By combining different information about the specific traits of a patient (Big Data), and with the help 
of artificial intelligence (AI) and the expertise of medical experts, it is possible to develop such a 
pre-treatment predictive model. The key question is whether the pre-treatment predictive model is 
good enough to be used in clinical practice. 

The training and testing data we used for developing the model consisted of clinical and 
pathological data from 1512 patients that were enrolled in the phase II POPLAR and phase III OAK 
trials. These patients with previously treated NSCLC were randomly assigned to receive 
atezolizumab, a PD-L1 inhibitor, or docetaxel. The primary outcome in our experiment was defined 
as overall survival (OS) after 2 years (yes or no).

1. Borcoman et al. Annals of Oncology 30: 385-396, 2019. 
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Predictors and outcomes
The following five variables were most predictive for OS after 2 years (in descending order of 
predictive value): C-reactive protein (CRP), number of metastatic sites, time since diagnosis, 
neutrophils, PD-L1 expression. For PFS after 3 months additional predictive variables were found, 
the most important of those was CD19.

The OS model after 2 years has an AUC of 0.81. The area under the curve (AUC) measures the 
performance of the predictive model. In general, for diagnostic tests an AUC of 0.5 suggests no 
discrimination, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more than 
0.9 is considered outstanding.1

The OS after 2 years seems to be influenced by the use of antibiotics. In depth machine learning 
analysis revealed a difference between atezolizumab versus docataxel. Further analysis will be 
done to see if the number of antibiotic courses is important in this respect.

Conclusions 
A pre-treatment predictive model was developed which discriminates patients with distinct 
differences in survival outcomes following atezolizumab (PD-L1 inhibitor) treatment for advanced 
NSCLC. 

For patients considering the initiation PD-L1 inhibitor treatment of advanced NSCLC the pre-
treatment predictive model presented for OS after 2 years may be useful for the provision of more 
personalized expectations of survival outcomes, which may inform treatment choices and 
contribute to a higher quality of life.

Clinical relevance
This experiment showed that pre-treatment CRP is an important prognostic variable for OS after  
2 years in advanced NSCLC patients treated with a PD-L1 inhibitor. Together with other routinely 
collected data: number of metastatic sites, time since diagnosis, neutrophils and PD-L1 a fair 
prediction can be made for the individual patient regarding OS after 2 years (yes or no). Taken into 
account the variables used in the models it is remarkable that PD-L1 expression is of limited value 
for predicting the treatment outcome. A general conclusion is that a simplification, the use of a 
single biomarker for prediction (e.g. PD-L1 expression), underestimates the complexity of diseases 
and is of limited value. Big data, especially relevant deep data, is needed to further improve our 
understanding of the underlying cause(s) of disease in the individual. 

1. Mandrekr J. J Thorac Oncol. 5: 1315-1316, 2010.



PHC CATALYST 7

2  Highlights of the experiment 

2.1 Introduction
In daily clinical practice doctors and patients are challenged to make decisions about treatments. 
One question which often arises is, “will the drug work for me doctor”? The objective of this 
experiment is, to make a model that predicts the outcome of treatment with immunotherapy by 
using Machine Learning in patients with advanced Non-Small Cell Lung Cancer (NSCLC). The 
members of the team that took the challenge were Dutch Healthcare professionals (HCP) and 
data-researchers, all members of the PHC Catalyst Alliance. The vision of this alliance is to 
accelerate the use of personalized healthcare in daily clinical practice. The initial thoughts were to 
organize a data-hackathon to tackle the questions involved.

2.2 Data access (see also Appendix A: Data access journey)
Interestingly, finding, accessing and combining data sources, turned out to be by far the hardest 
challenge in this experiment: it took us nine months to get access to data. The next barriers were found:

•  GDPR concerns: according to the GDPR guidelines data used for study purposes has to be 
completely had to be anonymized. Effective data anonymization is made up of two parts:1

 -   It is irreversibel.

 -  It is done in such a way that it is impossible (or extremely impractical) to identify the data 
subject.

•  Data mining: is difficult because current practice is that patients give informed consent for a 
specific research question (testing hypothesis), therefore the data cannot be used for datamining 
(generating new hypothesis). Datamining involves exploring and analyzing large amounts of data 
to find patterns of correlation which may generate hypothesis on health/disease understanding;

•  Data pollution: clinical trial data are of very high quality, therefore there is a genuine concern that 
combining these data with other data from other sources (e.g. hospital data) may reduce the 
reliability of the insights generated from data (garbage in, garbage out); 

•  Data sources considered: 

 -  Roche clinical trial data; 

 -  Flatiron real world data: at the time of the experiment Flatiron data was only accessible for 
researchers and clinicians that participate in the Flatiron hospitals and academic centers 
network; 

 -  Dutch hospital data: is only accessible for specific research questions and not yet for 
datamining. The process is very time-consuming, and (perceived) privacy concerns make the 
management of hospitals reluctant to participate in this type of innovative experiments;

 -  Open Dutch data sources (e.g. BBMRI): are only accessible for researchers and the process is 
similar to what is described above for the hospitals, thus extremely difficult and time-consuming.

After two years parts of data sets from two studies, POPLAR and OAK, in which in total 1512 patient 
were enrolled (see appendix Immunotherapy for details). The PDMA department (Global Medical 
Affairs), together with a data scientist from gRED (Global R&D unit, Genetech) partly prepared and 
shared the filtered datasets (e.g. DNA sequencing data, exploratory biomarkers, pharmacokinetic/
pharmacodynamic data and radiology data were filtered out) with the Accenture data scientists.  
Of course, the data was anonymized according to both the GDPR and Roche guidelines. 

1. https://gdpr.eu/?s=anonymizationation.

https://gdpr.eu/?s=anonymizationation
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2.3 Contracts & IT
•  Contracts: The internal Roche processes for selecting and contracting the vendor took four 

months. There is no internal process for data-mining (e.g. a data hackathon), and thus no legal 
contract template for this purpose. The alternative was a dataroom (a ‘virtual’ room containing 
secured date) where the data was analysed by dedicated data scientists from the vendor. We 
used an adjusted clinical trial legal template for this purpose. This covered confidentiality and any 
IP-issues.

•  IT: Global IT and Accenture global IT discussed different solutions for the dataroom environment. 
Different cloud enviroments were heavily discussed (AWS, Google Cloud, Roche’s own cloud), 
but the most pragmatic solution turned out to be storing the data on two local Roche laptops. 
The data could only be accessed by the data scientists from the vendor and the Roche 
Netherlands team members, so none of the other participants could access to the data. Their role 
was to guide the data analysis by giving feedback on the results. 
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3  Data-analysis 

The steps followed during the data-analysis phase of the experiment: 

3.1 Step I
Summaries of datasets of the two studies were reviewed and discussed with the data-analysis-
group (PHC Alliance members) and the questions to address were fine-tuned, which led to a total of 
12 research question. As a next step we selected three questions based on complexity and impact 
of the questions.

The three questions:

1.  Can we build a robust model to predict if a patient survives after 2 years of treatment (OS)?

2.  Can we build a robust model to predict if a patient has no cancer progression after 3 months of 
treatment (PFS)?

3.  What is the effect of antibiotics on OS in patients treated with atezolizumab/ immunotherapy

Based on these questions a first selection of data was done (Table 2: Data sources). One has to 
understand that the outcomes in this approach are binary, i.e. OS at 2 years = yes or no; idem for PFS. 
At the moment immunotherapy is offered to the patient he or she has reached an advanced stage 
of cancer. Then the questions asked by the patient are usually about survival; “how long will I live” or 
“will I still be alive after X years”. We focused on the later type of question for survival. 
The timeframe of 2 years OS was chosen by the healthcare professionals in the data-team. Also, the 
PFS time window of 3 months was chosen because this is the average time it takes for the immune 
system to respond to the immunotherapy and start fighting cancer.

3.2 Step II
Exploratory data analysis and further preparation of the data were done to make an analytical base 
table (ABT). In this table all variables (of interest) are rearranged and linked to the outcome variable 
you want to predict (Appendix C: Modelling Variables). 

During this process discussions took place with the HCPs for interpretation and selection of data. 
After this step the data is in a proper format to be ‘processed’ by an algorithm.
In parallel correlation analysis between variables and OS outcome were performed to check if more 
variables might be of use for modeling. 

This resulted in 1407 observations and 441 features for PFS and 1379 observations and 437 features 
for OS (a feature is a processed variable in such a way that it can be used by the algorithm)  
(Table 5: Feature engineering based on variables from the data sources). 

Hierarchically clustered correlation plots are available for each ABT component: basic patient 
characteristics, co-medication, lab values, medical history, and vital signs. These plots provide a 
qualitative overview of the correlations. (Figure 4. Hierarchical clustering of correlations between 
lab values and OS target and Appendix G: Correlation Analysis).
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3.3 Step III
In the supervised machine learning (ML) modelling phase, different options were tested, some of 
them listed in Appendix B. 

In the supervised machine learning (ML) modelling phase, different algorithms and modelling 
options were tried out to build the optimal predictive model for our scope. In the patient population 
there is a high number of features given the sample, therefore we use an approach based on 
features correlation with the target. A constraint, or penalty, is added when the model has too many 
features and thus features that are not informative for the model are removed.

We found this approach to perform best with the XGBoost algorithm in predicting OS at 2 years; the 
AUC = 0.81, sensitivity = 0.67 and specificity = 0.76, at a threshold of 0.35 (Table 7: Summary of ML 
models built for OS prediction).

For PFS at 3 months we use the same modelling approach that performs best with a GBM algorithm 
AUC = 0.64, sensitivity= 0.77 and specificity = 0.33 at a threshold of 0.5 (Table 8: Summary of ML 
models built for PFS prediction).

In total 27 features were used for the OS model (Table 6: Feature importance for the OS and PFS 
predictive models), the top 5 features model are:
1. CRP
2. Number of metastatic sites 
3. time since diagnosis
4. neutrophils
5. PD-L1

For the PFS model 15 features were selected the top 5 being:
1. CRP
2. time since diagnosis
3. CD19
4. Neutrophils
5. Number of metastatic sites 

Performance evaluation per treatment arm
In the modelling design, OAK & POPLAR patient data was used to train the OS model irrespective of 
the treatment arm. When we test the model for patients taken treatment into account, 8% of the 
ATEZ patients are falsely classified as non-survivor while for the docetaxel group this is 8.7%. The 
conclusion is that we assume there is no significant difference in the OS model performance 
between the two treatment arms.

Hopkins
Finally, we compared our modeling results with a study by Hopkins that was published during our 
data-analysis sessions.1 Their research question was to predict OS based on OAK and POPLAR data 
used for training the model. Data sets from two additional studies (FIR & BIRCH) were used for 
external validation of the model. FIR & BIRCH were single arm atezoluzimab studies. Based on 
statistical analysis - multivariate Cox proportional hazard model - they defined five prognostic 
groups from low to high and estimated OS for these groups using Kaplan-Meier estimates. Although 
the study design between Hopkins et al. and our predictive model is different, it is possible to 
compare the important variables and performance of the two models. 

1. Hopkins A.M. et al. Clin Cancer Res 26:3280-6, 2010.
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The same variables were found to be important predictors in the Hopkins model and in our model. 
Hopkins paper used statistical analysis - univariate and multivariate Cox proportional hazard  
models to find the top predictors, while we used ML to generate this list seen in Table 6. Regarding 
performance of the Hopkins model compared to our model, which should be done with caution  
as explained above, Hopkins model reaches c-statistic 0.72 in the development cohort (OAK & 
POPLAR) and 0.76 in the test cohort (FIR & BIRCH). Our model reaches 0.81 when tested on the  
OAK & POPLAR population.

3.4 Step IV
The effect of antibiotics on OS.

A number of publications have discussed the possible negative outcome of check-point inhibitors 
due use of to antibiotics. 

A recent paper by Chalabi, who performed a pooled ad-hoc analysis on the OAK and POPLAR study 
data and suggested that use of antibiotics (ABT) from 30 days before treatment until 30 days after 
start of treatment is associated with worse survival outcomes.1

To analyze the effect of ABT on overall survival a Kaplan-Meier was made (Figure 7: Kaplan-Meier 
survival plot). This clearly shows that patients on atezolizumab without the use of ATB have a better 
OS compared to antibiotic users (p< 0.0001). We are performing an analysis to see if the use of 
antibiotics during the treatment course with atezoluzimab also has a negative impact (so the use of 
antibiotics 30 days or more after randomization). Outcome is pending.

If the analysis shows that the use of antibiotics during the treatment with CIT will have a negative 
effect an outcome, this is an important finding.

3.5 Step V
Is our predictive pre-treatment OS model good enough? 

Whether or not the OS prediction model with an AUC= 0.81 is sufficient for clinical use, is not clear. 
Depending on the patient’s needs for certainty the model can support the choice of treatment. 

However, we still need to validate model with real world data. Does the AUC remain 0.81 or will it 
decrease? 

Some considerations regarding the validation:
PFS is more complex to model due to various factors including pseudo-progression and definitions 
used. The Hopkins paper also build a statistical model for PFS. Their model reached performance 
0.60 on the development cohort and 0.61 on test cohort. Our model for PFS reached 0.64. While this 
is not robust enough to implement in the clinic yet, it shows the model has potential to be further 
refined with additional exploration & analysis of the data.

1. Chalabi M. et al. Ann Oncol 31:525-531, 2020.
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3.6 Potential next steps
3.6.1 This model

•  An additional analysis on the influence of the use of antibiotics on survival outcomes will be done 
(the results will be presented in the final version of this report). If the analysis shows that the use 
of antibiotics during the treatment with CIT will have a negative effect an outcome, this is an 
important finding.

•  The model still needs to be validated. Ideally, we would like to use real-world data from Dutch 
hospital patients for external validation of the model.

 -  The next step would be to collect retrospective anonymized data from patients with advanced 
NSCLC from one or more hospitals. Selection of the hospital(s) should be done by the team. 

 -  Another validation source could be The NVALT registry as this contains a lot of (unstructured) 
data of around 3.500 NSCLC patients treated with immunotherapy. 

•  Datamining of the current dataset enriched with deeper data to the datasets (e.g. -omics data, 
PK/PD data, imaging data) to improve or redefine the model.

3.6.2 In general 

•  Qualitative research to determine the value of predictive models in daily clinical practice: when is 
a model good enough according to the doctor and the patient? 

•  A desire to combine data from different databases: Pharmo/Palga/NVALT/IKNL (feasibility study 
is ongoing with 20 patients). 

•  A desire to develop model for immunotherapy in the earliest stage of lung cancer (does this data 
exist anywhere in the world?). 

3.7 Conclusions
The collection of ‘big data’ to build prediction models via machine learning is a time-consuming 
exercise. Within Roche no clear processes are in place, so final decision making for providing data is 
difficult. Of note, our project has made this problem very clear and things are moving within the 
organization to have a clearer process in place. In Dutch hospitals the use of data for ML is even 
harder and hopefully the Dutch government will take an active role for guidance.

The model that was developed still needs improvement but shows that ML can be used as a 
decision support tool. Improvement of the model by adding more in-depth data is likely. However, 
this type of data is often not captured in daily clinical practice and needs investments for expensive 
diagnostic procedures.

The hurdles to overcome before the model can be tested in the hospitals with real world data are 
still in place. We will continue this journey, learning by doing is our way forward. 
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4  The Experiment in detail

Please follow this link to access the full ImmuunPRO data hackaton report:
Personalized healthcare: How immunotherapy for non-small cell lung carcinoma can be tailored 
to individual patients
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5   Appendices 

5.1 Immunotherapy a major breakthrough in cancer treatment
5.1.1 Disease complexity
Cancer is a complex multifactorial disease. Complex diseases are difficult to study and treat, 
because many specific factors that cause or contribute to the disease have not yet been identified. 
Every tumor is truly unique and each patient is different. This explains why not all patients respond 
to standard therapy, one size does not fit all. A more personalized approach is needed.

5.1.2 Immunotherapy
Novel patterns of responses1

Cancer immunotherapy is a significant advance in the treatment of cancer. Novel patterns of 
response and progression to immunotherapy have been reported, that are not observed with 
conventional cytotoxic or targeted anticancer treatments. The major breakthrough with 
immunotherapy is its potential to achieve durable responses in a subset of patients with advanced 
cancer that can be maintained several years even after stopping the treatment. 

However, a substantial proportion of patients does not respond to immunotherapy. Furthermore, 
pseudoprogression occurs, supporting the concept of treating some patients beyond progression, 
hyperprogression occurs, where it is essential to interrupt the treatment and switch to another 
potentially active treatment, and finally some patients experience dissociated responses, with some 
lesions shrinking and others growing, where local treatment with surgery or radiotherapy for groing 
lesions may be considered. 

Many varied forms of cancer immunotherapy
Just as the immune system is complex, then so are the many varied forms of cancer 
immunotherapy. One approach is to genetically modify a patient’s own T-cells to make them target 
tumour cells. This so-called chimeric antigen receptor (CAR) therapy is a personalised form of 
cancer treatment. CAR T-cells have produced dramatic improvements when tested in clinical.

Other approaches have concentrated on lessening the natural inhibition of T-cells - in effect taking 
the “brakes” off so that the T-cells become potent killers free to destroy rogue cancer cells. This is 
done by producing targeted antibodies, known as monoclonal antibodies (MABs), that are directed 
against the “braking” molecules such as CTLA-4 and PD-1/PD-L1 (programmed death), which are 
known to act at T-cell inhibitors. 

Immune checkpoint inhibitors (ICI)
Immune checkpoint inhibitors work by blocking checkpoint proteins that are made by some type of 
immune system cells, such as T cells, and some cancer cells. These checkpoints help keep 
immune responses from being too strong and sometimes keep T cells from killing cancer cells. 
When these checkpoints are blocked, T cells can kill cancer cells better. Examples of checkpoint 
proteins found on T cells or cancer cells include PD-1/PD-L1. 

1. Borcoman et al. Annals of Oncology 30: 385-396, 2019.
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5.1.3 Atezolizumab
A PD-L1 immune checkpoint inhibitor
A key component of the immune cellular pathway is PD-L1. Due to its presence in healthy cells, 
PD-L1 helps immune cells not attack healthy cells. Normally, the immune system fights foreign 
substances such as viruses and bacteria, but not its own healthy cells. Some cancer cells have a lot 
of PD-L1, which allows the cancer cells to “trick” the immune system into not attacking them as 
harmful foreign substances. Atezolizumab is an immunoglobular antibody designed to target the 
PD-L1 protein and block its interaction with its programmed receptors, thereby restoring T-cells, 
which are immune system cells that help protect the body from infection and may help fight cancer. 

Atezolizumab is a humanised antiprogrammed death-ligand 1 (PD-L1) monoclonal antibody that 
inhibits PD-L1 and programmed death-1 (PD-1) and PD-L1 and B7-1 interactions, reinvigorating 
anticancer immunity.

5.1.4 The randomized OAK and POPLAR trials
Registration studies
To address this overarching question, it was suggested to analyze two patient cohorts, OAK (phase 
III) and POPLAR (phase II). These studies assess the results of different treatments focused on the 
inhibition of tumor growth in patients with non-small cell lung cancer. These patients received one 
of two treatments: chemotherapy (docetaxel) or immunotherapy (atezolizumab). 

   OAK and POPLAR were randomized trials of atezolizumab 1200 mg intravenous (IV) every  
3 weeks versus docetaxel 75 mg/m² IV every 3 weeks for patients with advanced NSCLC  
whose disease progressed on platinum-containing therapy. 

The OAK study, a phase III trial of a treatment targeting the PD-L1 protein, is aimed at the treatment 
of advanced non-small cell lung cancer and showed that:

•  Atezolizumab results in a substantial improvement in treating advanced non-small cell lung 
cancer over docetaxel, also these improvements are longer lasting.

•  The proportion of patients with an objective response in the intention-to-treat (ITT) population did 
not improve with atezolizumab compared to docetaxel.

•  There is an apparent discordance between progression-free survival and overall survival that 
could be explained by the initial increase in tumor volume due to increased immune infiltration, 
delayed anti-tumor activity or anti-tumor immune activation.

In the POPLAR study, aimed at the treatment of previously treated non-small cell lung cancer, it was 
found that:

•  For patients with tumors containing high levels of PD-L1, they gained a greater benefit from 
atezolizumab. 

•  For patients with a low level of PD-L1 there is also a benefit to treatment with atezolizumab, this 
should be justified with further research to better understand the responses of these patients. 
One hypothesis is that atezolizumab increases cancer immunity through enhanced preparation of 
new cancer immune responses.

Therefore, the OAK study concludes that there is a greater survival benefit in the treatment of 
non-small cell lung cancer for patients previously treated with atezolizumab versus docetaxel, with 
a higher safety profile. The POPLAR study concludes that atezolizumab provides a survival benefit in 
previously treated NSCLC patients, and that PD-L1 expression on tumor cells (TC) and tumor-
infiltrating immune cells (IC) is predictive of this benefit.
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List of abbreviations

 
ABT
Analytical base table 

AI
Artificial Intelligence

AUC
Area under the ROC curve

CIT
Cancer Immunotherapy

C-STATISTIC
Concordance statistic (equal to AUC)

EDA
Exploratory data analysis

EMA
European Medicines Agency

GBM
Gradient boosting machine

IC
Immune cells

NSCLC
Non-small cell lung carcinoma

OS
Overall survival

PHC
Personalized Health Care 

RF
Random forest

ROC curve
Receiver-operator characteristic curve

SME
Subject matter expert 

TC
Tumor cells

XGBoost
Extreme gradient boosting
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1  Executive summary

The Dutch Personalized Health Care Catalyst Alliance and the cancer 
immunotherapy hackathon
Developments in science, society & technology have paved the way for a shift in thinking in many 
areas of life, also in the medical world: personalization. Possibilities, and increasingly expectations, 
of treatment have evolved from ‘one-size-fits-all’ to focusing on the differences between individuals 
and on the traits that uniquely characterize a patient. This approach is the basis for personalized 
healthcare: the acknowledgement that no two individuals are the exact same. By including a 
patient’s characteristics such as their genetic make-up and the specifics of their disease, we can 
provide tailored treatments which optimize the outcome for each individual.

Since 2018 the Dutch Personalized Healthcare (PHC) Catalyst Alliance is active in increasing the 
understanding of the importance, opportunities, and challenges in the Personalized Healthcare 
space. The PHC Alliance is committed to accelerating the transition to personalized care by creating 
a receptive environment (sustainable, agile and adaptive health care system) in which optimal use is 
made of all available data, tools and knowledge (including best practices) and in which innovations 
that enable personalization quickly reach daily practice. The initiative for this development comes 
from Roche, however it was intended from the beginning that this Alliance would not be something 
for Roche, but rather made possible by Roche. Anyone who would feel compelled to join the 
movement is welcome. The Dutch Alliance is based on the principle of ‘Combinatorial Innovation’ 
(creating new value by combining knowledge, ideas and networks) which has led to a steady 
growth in ‘coalition of the willing’ parties that are directly or indirectly involved or want to contribute 
to the transition to a new healthcare system.

One of the in early projects the Alliance initiated was a data hackathon in which Roche NL, 
members of the Dutch PHC Alliance and Accenture NL collaborated. In this hackathon, medical 
expertise and Artificial Intelligence (AI) are leveraged to predict survival in Non-Small Cell Lung 
Carcinoma (NSCLC) patients treated with either immunotherapy or chemotherapy and to assess the 
effect of antibiotics on survival.

Immunotherapy is a type of treatment that targets the immune system and triggers it to fight 
disease, in this case cancer. By combining different information about the specific traits of a patient 
with the help of machine learning (ML) and AI, it is possible to assess treatment outcomes for each 
patient individually. Models that accurately predict which patients could benefit from 
immunotherapy may inform treatment choices and contribute to a higher quality of life.

Research questions address survival endpoints prediction and antibiotics effect
In this research project, we worked together with health care professionals from academic expertise 
centres - all Alliance members - to refine and prioritize research questions to be analyzed. Through 
a series of workshops, the following research questions were selected:

•  Can we predict which patients survive after 2 years?

•  Can we predict who has no cancer progression after 3 months of treatment?

•  Which predictor variables are correlated with overall survival after 2 years and with progression-
free survival at three months? 

•  What is the effect of antibiotics on the OS at 2 years?
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To predict survival, we leveraged the power of machine learning that allows us to find new 
correlations within the datasets. First, we conducted an exploratory data analysis (EDA) to measure 
correlations between variables and to define the targets for overall survival at 2 years and 
progression-free survival at 3 months. After preprocessing the data, different modelling strategies 
were tested in combination with algorithms such as random forest (RF), gradient boosting machine 
(GBM), and extreme gradient boosting (XGBoost).

Table 1: Model results for overall survival predictive model 

The OS prediction model makes a binary classification, meaning that asking the question “is the 
patient alive at 2 years from the start of treatment?” has two possible answers (a patient is either 
alive or not at a given time). Predictive models for binary outcomes are evaluated using the Area 
Under the Receiver - Operator Characteristic (ROC) Curve, or AUC. Our model for OS at 2 years 
predicts survival with AUC 0.81 and a second predictive model, developed for PFS at 3 months, has 
the predictive accuracy AUC 0.64.

In addition to the models built, we conducted a survival analysis using the Kaplan-Meier estimator 
to detect the effect of antibiotics on survival. We found that patients who receive antibiotics have a 
significantly lower overall survival than those who are not given a course of antibiotics (p = 0.01).

Evaluation and next steps to realize personalized healthcare
The survival model generated in this project can be used to predict for each patient the probability 
of survival, proving the model potential to support clinicians and patients in their decisions. Thus, 
the important question regarding predictive models is: when is a model accurate enough for 
patients and for physicians? And how can it be applied in the clinic? Treatment options should be 
considered carefully based on both model performance and the patient’s perspective. For this 
reason, it is advisable to test the model on real-world data and to include the patients themselves  
in the discussion on how to assess treatment options supplemented by AI. 

AUC for OS at 2 years Sensitivity Specificity

0.81 0.67 0.76
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2   Introduction: the importance of identifying which patients 
benefit from immunotherapy

A showcase for the PHC Alliance to accelerate the transition towards personalized 
healthcare
Personalized Health Care shifts the focus from the traditional ‘average patient’ resulting in trial-and-
error treatments to recommendations tailored to patients based on their genomic profile and other 
individual characteristics1. These unique traits can be used in an early stage to detect disease, or 
later in the standard of care to make personalized predictions for disease progression and treatment 
results. Personalized care can yield better outcomes in patient stratification by ultimately allowing 
for subcategories of n=1 patient2, as well as fewer side effects like drug toxicity. In the case of 
immunotherapy only a fraction of the patients has a lasting response to therapy3, showing that a 
personalized approach is needed to find the right therapy for each patient. Thus, the 
multidisciplinary Dutch Personalized Healthcare (PHC) Catalyst Alliance was brought together to 
accelerate the transition towards a personalized healthcare model4,5. One of the early projects the 
Alliance initiated was meant to bring together Alliance members and Accenture to leverage medical 
expertise and AI in order to determine which Non-Small Cell Lung Carcinoma (NSCLC) patients will 
benefit from immunotherapy4.  

Studies show the benefits of immunotherapy for some NSCLC patients
To address this overarching question, it was suggested to analyze two patient cohorts, OAK6 (phase 
III) and POPLAR7 (phase II). These studies assess the results of different treatments focused on the 
inhibition of tumor growth in patients with non-small cell lung cancer. These patients received one 
of two treatments: chemotherapy (docetaxel) or immunotherapy (atezolizumab). 

A key component of the immune cellular pathway is PD-L1. Due to its presence in healthy cells, 
PD-L1 helps immune cells not attack healthy cells. Normally, the immune system fights foreign 
substances such as viruses and bacteria, but not its own healthy cells.  Some cancer cells have a lot 
of PD-L1, which allows the cancer cells to “trick” the immune system into not attacking them as 
harmful foreign substances. Atezolizumab is an immunoglobular antibody designed to target the 
PD-L1 protein and block its interaction with its programmed receptors, thereby restoring T-cells, 
which are immune system cells that help protect the body from infection and may help fight cancer.  

The OAK study, a phase III trial of a treatment targeting the PD-L1 protein, is aimed at the treatment 
of advanced non-small cell lung cancer and showed that6:

•  Atezolizumab results in a substantial improvement in treating advanced non-small cell lung 
cancer over docetaxel, also these improvements are longer lasting.

•  The proportion of patients with an objective response in the intention-to-treat (ITT) population did 
not improve with atezolizumab compared to docetaxel.

•  There is an apparent discordance between progression-free survival and overall survival that 
could be explained by the initial increase in tumor volume due to increased immune infiltration, 
delayed anti-tumor activity or anti-tumor immune activation.
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In the POPLAR study, aimed at the treatment of previously treated non-small cell lung cancer, it was 
found that7:

•  For patients with tumors containing high levels of PD-L1, they gained a greater benefit from 
atezolizumab. 

•  For patients with a low level of PD-L1 there is also a benefit to treatment with atezolizumab, this 
should be justified with further research to better understand the responses of these patients. 
One hypothesis is that atezolizumab increases cancer immunity through enhanced preparation of 
new cancer immune responses.

Therefore, the OAK study concludes that there is a greater survival benefit in the treatment of 
non-small cell lung cancer for patients previously treated with atezolizumab versus docetaxel, with 
a higher safety profile6,8. The POPLAR study concludes that atezolizumab provides a survival benefit 
in previously treated NSCLC patients, and that PD-L1 expression on tumor cells (TC) and tumor-
infiltrating immune cells (IC) is predictive of this benefit7.

During the journey to access data, the hackathon evolved into a proof of concept
In order to access Roche clinical trial data, specific questions are needed with a valid scientific reason 
or aiming to improve patient care. To complete the data access request, the healthcare professionals, 
members of the PHC Alliance, have provided their initial research questions as follows: 

•  To determine the effect of concomitant medications on objective response and/or survival (PFS/
OS) of patients treated with atezolizumab, and to determine its confounding factors.

•  To determine patient baseline factors influencing survival.

The initial data hackathon proposal was to build a predictive model for cancer immunotherapy (CIT) 
in NSCLC patients. Due to the restricted nature of the data, it was not feasible to organize a public 
hackathon in the format originally envisioned. However, the journey to find and access data resulted 
in an innovative setup: PHC Alliance members lend their expertise in the analysis and receive 
insights, while the clinical trial data remains in a virtual data room. Therefore, it was decided that a 
prediction model based upon the POPLAR and OAK studies will be validated for each of the 3 
hospitals separately.

Once the data access request was approved, the format of the analysis was updated to contain 
three phases as illustrated below: a preparation phase to set up legal agreements & infrastructure 
required for analysis, a phase to generate a machine learning predictive model for NSCLC patients, 
and a phase to validate the model on real world data (RWD) from hospital patients. 

Figure 1: Data analysis extended planning

LEGAL AND IT
PREPARATION

• Set up contracts.
• Set up Roche infrastructure.

HOSPITAL
ONBOARDING

• Acquire approvals.
• Timing tbd with hospitals.

• Set up the contracts for 
 data access and 
 processing.
• Set up the required
 infrastructure at Roche
 for data analysis.

CLEAN MODEL HACK

CLEAN MODEL HACK

Preparation phase

• Access and (potentially) clean the Roche data by mixed 
 Roche/analytics team.
• Explore, test hypotheses provided bij participating hospitals.
• Hackathon to develop a predictive model with Alliance 
 participants (3rd party participants, Roche, Accenture).
• Evaluation moments included after each phase.

Model generation

• Validate the applicability of the model within hospitals with 
 real world evidence.
• Request access to the required variables.
• Clean, explore the data and validate the applicability.
• Evaluation moments included after each phase.

Model validation

Weeks 1-4* Weeks 5-14 Timeline depending on hospital approvals
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For details on the data access timelines, see Appendix A. 
The preparation phase was completed successfully when Roche granted clearance for data access 
to Roche NL and the Accenture AI team. Subsequently, data from two study cohorts (OAK and 
POPLAR) were made available in a virtual data room in the form of SAS datafile extracts. Marking the 
start of the model generation phase, a pipeline was built to load, explore and analyze the data using 
R in the RStudio environment.

3   Pursuing the analytical workflow together with Alliance 
members: methods and results 

a.  Workshops
Following an initial exploration of the data, the research scope and analysis strategy were 
developed and validated together with selected Alliance members in a series of interviews and 
ideation workshops. 

In the first workshop, together with domain experts, we assessed existing questions & prioritized 
new research questions in more detail. Fig.2 shows the full list of these questions, mapped 
according to impact and effort. Based on this mapping, the following research questions were 
selected for the current project scope:

•  Can we predict which patients survive after 2 years?

•  Can we predict who has no cancer progression after 3 months of treatment?

•  What is the effect of antibiotics on the disease progression?

•  Which predictor variables are correlated with overall survival after 2 years and with progression-
free survival at three months?

Figure 2: Prioritization of research questions
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1. Predict PFS at 3 months from baseline
2. Predict OS at 2 years from baseline
3. Can we predict the duration of the response?
4.  Are there routine test panels in the lab and how often are 

they applied? Can we get earlier warning on progression or 
response based on panel results?

5.	 	What	is	the	effect	of	antibiotics	on	PFS	and	OS?																				
And	how	do	these	differ	between	the	arms?

6. Direct correlation of all variables with OS & PFS

7. Correlation between QoL & survival
8.   What disease/medication do patients have at baseline? 

And the relation on PFS

9. Predict QoL when patient survives after 2 years
10.  Find important dissimilarities or similarities between patients
11. Feasibility exercise for missing data
12. Can we do a time analysis on the lab values?
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Within this scope, we selected for further analysis datasets that hold data about subject level 
analysis, concomitant medication, treatment response, laboratory test results, medical history, and 
vital signs. The overview of the OAK/POPLAR datasets used is available below: the subject level 
analysis contains clinical measurements, treatment arm, study completion information, PD-L1 
expression on tumor cells and on immune cells, mutations and other patient characteristics. 
Comedication data contains the medication class and dose, including antibiotics baseline data. 
Other datasets with predictive variables are the lab values, vital signs, and medical history. Lastly, 
the response data is used to identify which patients are alive and have no cancer progression and 
thus define targets for the predictive models. 

Table 2: Data sources

Subject level analysis Comedication Lab values
Age, sex, race, ECOG score Comedication name, class, Test parameters, lab values with
Metastases (nr, flag per organ) dose, antibiotics ranges, lab tests with flags
Histology
PD-L1 on TC & IC cells 
Mutation KRAS, EGFR, ALK Vital signs Treatment response
Alive flag, Vital signs test name, visits Response metrics, response
Study completion name, results time, tumor progression
Treatment completion 
Therapy line
Tobacco use history Medical history
Time of exposure Event category
Time of diagnostic Number of events, epochs

To address the research questions above, we pursued a modelling strategy starting with the 
exploratory data analysis (EDA) of the tables in scope including definition of the OS and PFS targets. 
This was followed by feature engineering, normalization of the data and building of the analytical 
base table (ABT). We presented this in the second workshop, together with the analytics approach 
illustrated in Appendix B for the supervised machine learning models for OS and PFS. At this time, a 
similar survival analysis in NSCLC patients was published by Hopkins et al.9. Based on 4 cohorts 
including OAK & POPLAR, that team developed a prognostic tool for patient risk stratification. 
Therefore, we assessed our data analysis & methodology against the benchmark provided by this 
prognostic model. To do so, we reviewed the research paper together with the Alliance members. 
This research is summarized in Fig.3, and it is worth noting that most of the important variables 
published by Hopkins et al. had been selected during our first workshop in order to be included in 
the predictive model.
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Predictor variables at the baseline
1. Sex
2. Age
3. Race
4. Body Mass index 
5. Tobacco use history
6. ECOG performance score
7. Histology
8. Stage
9. Time since diagnosis
10. Nr. of prior treatments
11. PD-L1 expression
12. Nr. of metastases
13. Neutrophil to lymphocyte ratio (NLR)
14. Derived NLR
15. Lymphocite to monocite ratio (LMR)
16. Platelet to lymphocite ratio (PLR)
17. Eosinophils
18. Lactate dehydrogenase (LDH)
19. C-reactive protein (CRP)
20. Alkaline phosphatase (ALP)
21. Calcium
22. Haemoglobim
23. Albumin

Setup
Build a model on the atezolizumab arm of OAK/
POPLAR cohorts. Test on additional cohorts incl. 
docetaxel arm. 

Create prognostic groups for OS & PFS in NSCLC 
patients initiating atezolizumab.

Data

Important variables for the Hopkins et al. model are 
similar to parameters for baseline predictions 
selected in the current analysis.

Approach

Survival analysis is conducted to make a decision 
support tool. Additionally, the random survival forest 
method is explored.

Outcome

The resulting pre-treatment prognostic tool can be 
used to evaluate patient risk groups from low to 
high (c-statistic = 0.76)

Prognostic tool outperforms existing prognostic 
scoring tools.

Strongest predictors of OS at 2 years: CRP, LDH, 
dNLR, albumin, ECOG performance score, time 
since metastatic diagnosis, nr. of metastases.

Comparison of pooled randomised arms of OAK/
POPLAR indicates that benefit of CIT over chemo-
therapy is greater in patients in the lower risk group.

Figure 3: Summary of research by Hopkins et al.9

Hopkins et al. summary

In the third workshop, the prediction models we built for OS and PFS were reviewed and evaluated 
to define possible applicability in the clinic. The important variables for these models were 
compared with results from the correlation analysis that was done to identify which predictor 
variables are highly correlated with the targets or with other variables. By showing that variables are 
consistent between the predictive model and the correlation analysis, we increase the 
interpretability of the model and, with it, we demonstrate that the need for explainable decision 
support tools in the clinic can be satisfied with the help of machine learning and AI. 
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In the sections below, the research questions on survival prediction and correlation analysis are 
grouped together since they relate to a supervised machine learning problem. The antibiotic 
analysis is treated separately given that it is based on a survival analysis (Kaplan-Meier estimator) 
that fits better within a statistical framework.

b. Machine learning models
Exploratory data analysis
The OAK and POPLAR variables were mapped onto each other to combine datasets. Where variable 
names did not match between cohorts, the mapping was done with the support of the Roche data 
management team. Based on the research questions, input received during workshops from 
domain experts, and data exploration, a selection of variables was made for the analytical base 
table (ABT) for the machine learning model. This variable selection can be found in Appendix C and 
the treatment for missing values is found in this appendix. To generate the predictive model, we use 
an ABT that contains the anonymized patient identifiers, the target endpoints and the engineered 
features. First, unique patient IDs were used to build the ABT: each row represents a distinct patient, 
meaning the ABT is unique at patient level (n = 1512 patients).

Endpoint definition
The population survival endpoints were defined for the 1512 patients in the combined OAK and 
POPLAR cohorts. Three groups were defined for OS at 2 years:

•  Group 1: Patients for whom we know they are not alive and did die. 

•  Group 2: Patients for whom we know they are alive and did not die.

•  Group 3: Patients that are not recorded to die but whose last recorded alive date is below  
730 days. This could be due to censoring (for example lost in follow-up, withdrawal etc.) or  
data errors. For the prediction model only Group 1 and Group 2 are in scope.

Table	3:	Target	definition	for	overall	survival	at	2	years

To define PFS at 3 months, we analysed the patient’s alive status and tumor progression. We notice 
that many patients have the analysis study day (variable ADY) recorded around the 12 week visit. 
The average day for the 12 weeks tumor assessment is 85.1, therefore day 85 is used to count 
patients alive at 3 months. For progression-free status, a patient’s last tumor assessment by an 
investigator must not indicate progressive disease (PD). Additionally, when the progressive disease 
is analysed by an investigator, the outcome is negative. Based on these criteria 3 groups are 
identified.

•  Group 1: patients with progressive tumor before 3 months.

•  Group 2: patients who are alive at 3 months and have progression-free status.

•  Group 3: patients who do not have a 12 week assessment but also no death date recorded.  
Since there is no 12 weeks visit or death record available for these patients, it cannot be 
concluded which of the first two group2 they would belong to, if any. Therefore, for the  
prediction of PFS, only the first two groups are in scope.

OS groups In scope Nr. of patients

Group 1 Yes 986

Group 2 Yes 393

Group 3 No 120
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Table	4:	Target	definition	for	progression-free	survival	at	3 months

Feature engineering
Using the input variables, we prepared the data in a format that can be interpreted by the machine 
learning algorithm. This preparation entails data normalization, feature engineering, with some of 
these data transformations shown in Table 5. For example, age is a continuous variable and can be 
used as is. Conversely, histology information has the categorical values ‘squamous’ or ‘non-squamous’ 
and cannot be interpreted by an algorithm as such. To address this, a method called ‘one-hot 
encoding’ is applied where categorical variables are converted into binary ones. Here, histology is 
transformed into a new variable histology squamous with values 1 or 0 corresponding to yes and no, 
respectively. While the values ‘squamous’ or ‘non-squamous’ cannot be used by the algorithm to train 
a model, values 1 and 0 can be used for this purpose. Another example is the Eastern Cooperative 
Oncology Group (ECOG) performance score10 which is used to assess the daily living abilities of 
patients on a scale from 0 (asymptomatic) to 5 (dead). Based on the exclusion criteria only patients 
with ECOG scores 0 or 1 were included in the OAK & POPLAR cohorts. Within our programming 
environment, these values were initially interpreted as factors meaning the ECOG score could be one 
of two categories, without a relationship between them. In real life however this is not the case since 
we know there is an order between the two scores, namely patients with ECOG 0 are less hindered in 
their daily activities than patients with ECOG 1. To translate this information into code, the ECOG 
variable was converted from a factor into a numerical variable. Following a similar analysis, all the 
variables used as model predictors are transformed into new features where needed.

Table 5: Feature engineering based on variables from the data sources

PFS groups In scope Nr. of patients

Group 1 Yes 637

Group 2 Yes 770

Group 3 No 105

Variable Treatment for  
feature engineering

Variable Treatment for  
feature engineering

Age None (num ric) Nr. of prior treatments None (numeric)

Sex One-hot encoding 
(example: ‘male’ or ‘female’ 
becomes 0 or 1)

EGFR mutations One-hot encoding 

Histology One-hot encoding 
(example: ‘squamous’ or 
‘non-squamous’ becomes 
0 or 1 )

KRAS mutations One-hot encoding

Raw PD-L1 score None (numeric) ALK mutations One-hot encoding 

PD-L1 score Encoding (0, 1, 2, or 3) Tobacco use history One-hot encoding

ECOG performance score Factor encoding as 
numeric (0 or 1)

Baseline protein levels Result at baseline, reference, grade

BMI None (numeric) Comorbidity Present at baseline  
yes/no, years in the past, amount of 
years 

Weight None (numeric) Comedication Taken at baseline;  
yes/no flag and dose

Stage One-hot encoding QoL at baseline Score at baseline

Time since diagnosis None (numeric) Response parameters One-hot encoding (example: 
Param_last_tum_assess_yes is 0 or 1)

« 3.2 STEP II
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Correlation analysis & important features
In this phase a correlation analysis was conducted to assess interactions amongst features and 
between features and target (OS and PFS, respectively). Pre-processing included removal of 
features with near zero variance because these are not informative for modelling, and Spearman 
correlations were used on complete observations (each observation is one row). This resulted in 
1407 observations and 441 features for PFS and 1379 observations and 437 features for OS. 
Hierarchically clustered correlation plots are available for each ABT component: basic patient 
characteristics, comedication, lab values, medical history, and vital signs. 

The correlations for lab values and OS may be seen in Fig.4, where aval_ refers to analysis value. 
Here we may see there is some correlation between CD3, CD4; neutrophils, total protein, sodium, 
chloride, and CD19 are also correlated. Overall there is no significant correlation between features 
and the OS target.

Figure 4. Hierarchical clustering of correlations between lab values and OS target

« 3.2 STEP II
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The correlation analysis informs the selection of features for the machine learning model and adds 
interpretability; complete results for this analysis can be found in Appendix G. In our analysis, the 
algorithms used (GBM and XGBoost) are not affected by feature multicollinearity. For both OS and 
PFS targets, none of the features is highly correlated with the target. Some of the features with 
higher correlation with OS are C-reactive protein (CRP) analysis value, CRP high (flag), nr. of 
metastases, grade I hemoglobin, ECOG performance score, neutrophils high (flag), hemoglobin 
normal (flag), lymphocytes value, and hematocrit normal (flag). For PFS, some variables with higher 
correlation are CRP analysis value, nr. of metastases, grade I hemoglobin, neutrophils high, ALK 
phosphatase, albumin, lactate dehydrogenase high (flag), liver metastasis (flag), lymphocytes value, 
CD9, CD4, total protein, and TC/IC mean. Some of these variables are also important predictors for 
the models we built to predict OS and PFS. Table 6 shows the variables importance of the best 
performing OS model based on the XGBoost algorithm with elastic net feature selection, and the 
variable importance of the best performing PFS model based on the GBM algorithm and elastic net 
feature selection. Additionally, these variables were also found to be important in the Hopkins et al.9 

model (Fig.3). A description of the lab tests is included in Appendix C.

Table 6: Feature importance for the OS and PFS predictive models

Nr. Variables OS Model Nr. Variables PPS Model

1 aval_crp 1 aval_crp

2 metsites 2 time_since_diagnosis

3 time_since_diagnosis 3 aval_cd19

4 aval_neutr 4 aval_neutr

5 Ibnrind_crp_HIGH 5 metsites

6 tc_ic_mean 6 Ibnrind_album_NORMAL

7 Ibnrind_hgb_LOW 7 aval_lymphf

8 Ibnrind_t3fr_NORMAL 8 aval_f8915070

9 ecoggr 9 kras_neg_alk_neg

10 aval_f8915091 10 ecoggr

11 aval_chlor 11 aval_f8915040

12 Ibnrindidh_HIGH 12 PULSE

13 aval_f8915094 13 Ibnrindldh_HIGH

14 aval_ldh 14 aval_cd19Iy

15 aval_lymphf 15 gradel_hgb

16 treatment_atezolizumab

17 met_liver_yes

18  met_peff_yes

19  aval_f8915043

20 Ibnrind_cd8ly_unknown

21 aval_alt

22 aval_sodium

23 cmclas_flag_opioid_analgesics

24 mh_ongoing_prim_sys_org_class_general_disord 

ers_and_administration_site_conditions

25 hist_squamous

26  aval_spgrav

27 mh_resolved_prim_sys_org_class_respiratory_tho 

racic and mediastinal disorders

« 3.3 STEP III
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Predictive modelling results & evaluation
In the supervised ML modelling phase, different algorithms were tested including random forest 
(RF), gradient boosting machine (GBM) and XGBoost (extreme gradient boosting). For more details 
see the modelling strategy in Appendix B.

Clinical models for survival endpoints are commonly evaluated with the concordance statistic 
(c-statistic). For a given survival endpoint the assessment can be also interpreted as a binary 
classification problem, meaning that asking the question “is the patient alive at 2 years from the start 
of treatment?” yields one of two answers, a patient is either alive or not at that time. Predictive 
models for binary outcomes can be evaluated using the Area Under the Receiver - Operator 
Characteristic (ROC) Curve, or AUC11. For binary outcomes, the AUC is equivalent to the c-statistic12 
and accounts for the whole performance of the model, since each point on the ROC curve indicates 
the model sensitivity and specificity for that threshold. Sensitivity indicates the percentage of 
patients correctly predicted by the model to be alive at 2 years and specificity is the percentage of 
patients correctly predicted not to be alive. 

Figure 5: ROC curve of the OS model

The model reaches a performance of AUC = 0.81 using the XGBoost algorithm and feature selection 
with elastic net. The sensitivity for this model is 0.67 and specificity is 0.76, at a threshold of 0.35.  
For a discussion on setting the model threshold, see Appendix D. This OS model has higher 
performance than the tool developed by Hopkins et al., which has a c-statistic of 0.72 on the 
development cohort and 0.76 on the validation cohort9. The model for PFS at 3 months uses a 
gradient boosting machine (GBM) algorithm and feature selection with elastic net. For this model, 
AUC is 0.64, sensitivity 0.77 and specificity 0.33 at the 0.5 threshold. The report for this model is 
available in Appendix E. 
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Performance evaluation by treatment arm
In the modelling design, OAK & POPLAR patient data was used to train the OS model irrespective 
of the treatment arm. To test whether more patients in the atezolizumab group are predicted to die 
when in fact they survive and to test prediction accuracy, the cohort was split by treatment arm. 
For a threshold of 0.5, the model makes false classifications for 18.4% of the patients in the 
atezolizumab group and for 14% of patients in the docetaxel group. 

When the threshold is moved to 0.35, this gap decreases: 8% of the atezolizumab patients are 
falsely classified as not surviving, while for the docetaxel group the figure is 8.67%. At the same 
threshold we analyzed prediction accuracy per treatment arm and found the accuracy of the 
docetaxel group (76%) to be a bit better than that of the atezolizumab group (70%). This difference  
is small and mainly driven by the difference in the patients that do not survive and where the model 
is predicting they do. As this is opposite to our hypothesis, we do not have a reason to assume  
there is a significant difference in the OS model performance between the two treatment arms.

Table 7: Summary of ML models built for OS prediction

Nr. OS Model description AUC Sensitivity
0.5 

Specificity
0.5

Kappa
0.5

Sensitivity
0.35 

Specificity
0.35

Kappa
0.35

# Patients survive, 
predicted 

correctly at 0.35

# Patients survive, 
predicted 

incorrectly at 0.35

Nr. of 
features 

used

1 Random forest without f variables 0.81 0.32 0.96 0.35 0.59 0.82 0.4 46 32 42

2 XGBoost without the f-variables 0.78 0.41 0.9 0.35 0.58 0.77 0.34 45 33 31

3 Ensemble model 0.61 0.15 0.95 0.14 0.27 0.89 0.189 21 57 130

4 Gradient boosting machine on small set 0.77 0.1 0.99 0.13 0.54 0.85 0.4 42 36 5

5 Random forest with all features 0.83 0.2 0.97 0.24 0.59 0.83 0.42 46 32 58

6
Gradient boosting machine trained on  
sens feature selection with elastic net  

with vital signs
0.80 0.22 0.98 0.25 0.56 0.84 0.41 44 34 17

7
XGBoost without vital signs feature 

selection with elastic net
0.81 0.41 0.9 0.35 0.67 0.76 0.41 53 25 31

8
Gradient boosting machine without vital 
signs feature selection with elastic net

0.80 0.22 0.97 0.24 0.58 0.86 0.44 45 33 17

9
Random forest without vital signs  
feature selection with elastic net

0.81 0.23 0.97 0.26 0.56 0.83 0.4 45 33 55

10 XGBoost feature selection with trees 0.81 0.3 0.96 0.31 0.65 0.77 0.39 51 27 29

11
Gradient boosting machine feature 

selection with trees
0.79 0.17 0.98 0.19 0.59 0.85 0.44 46 32 20

12 Random forest feature selection with trees 0.81 0.17 0.97 0.18 0.64 0.84 0.48 50 28 82

13
First model: Gradient boosting feature 

selection based on variable importance
0.78 0.28 0.96 0.3 0.58 0.78 0.35 45 33 14

Table 8: Summary of ML models built for PFS prediction

Nr. OS Model description AUC Sensitivity
0.5 

Specificity
0.5

Kappa
0.5

Sensitivity
0.35 

Specificity
0.35

Kappa
0.35

# Patients survive, 
predicted 

correctly at 0.5

# Patients survive, 
predicted 

incorrectly at 0.5

Nr. of 
features 

used

1 XGBoost with elasticnet feature selection 0.61 0.65 0.44 0.09 0.87 0.25 0.10 101 53 19

2 Gbm with elasticnet feature selection 0.64 0.77 0.33 0.10 0.94 0.09 0.04 120 34 15

3 Rf with elasticnet feature selection 0.63 0.70 0.44 0.15 0.90 0.25 0.17 109 45 23

4 XGBoost tree without f variables, vital signs 0.56 0.66 0.41 0.02 0.86 0.22 0.09 108 52 45

5 XGBoost without f variables, vital signs 0.59 0.72 0.42 0.15 0.12 0.19 0.12 111 43 78

6 Rf without vital signs 0.62 0.73 0.43 0.17 0.95 0.19 0.08 113 41 82

7 GBM without vital signs 0.64 0.82 0.48 0.19 0.97 0.06 0.04 120 34 22

« 3.3 STEP III
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Performance evaluation for clinical applicability
The clinical relevance of the OS prediction model we developed is to predict whether a patient is 
alive at 2 years or not. Nevertheless, it may be just as important to reframe this by asking what is the 
chance that a patient will most likely die within a given period. To assess this, we ranked patients in 
a hit rate curve (Fig.6) by the probability they will not survive after 2 years. In the test set below, 
about a third of the patients (n=100) have a 95% chance of not being alive compared to the 
combined OAK/POPLAR cohort where patients have a 70% probability. Knowing with a high 
probability that one might die within a timeframe may enable patients to make different choices 
regarding their treatment and quality of life.

Figure 6: Patients ranked by probability they will not survive after 2 years

c. Antibiotic analysis
For the analysis of survival outcomes, it was hypothesized that antibiotics had a negative effect on 
overall survival especially in the atezolizumab treatment group. This is in line with research by 
Chalabi et al.13, who performed a pooled ad-hoc analysis on the OAK and POPLAR trail data and 
suggested that use of antibiotics (ABT) from 30 days before treatment until 30 days after start of 
treatment is associated with worse outcomes. 

On the next page is the table with the classes of drugs that are labeled as ABT in this analysis. Next 
to the classes are the number of patients that have taken this drug in the time window of 30 days 
before treatment start until 30 days after treatment start. In total 170 patients in the atezolizumab 
treatment group received ABT and 207 patients in the docetaxel treatment group received ABT.
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To analyze the effect of ABT on overall survival, Kaplan-Meier plots are made and with the  
log-ranking test we tested if the difference between the survival curves is significant. Overall 
survival is defined as the last date a patient was known to be alive, with the event being if the 
patient has died (yes or no). If the alive state of a patients was unknown, the patient was listed at 
censored. The Kaplan-Meier plot is shown in Fig.7; for the analysis report see Appendix F. 

Fig.7 shows that patients in the pink group, who were receiving atezolizumab as treatment and no 
antibiotics, had the best survival chances, while patients in the blue group who received 
atezolizumab in combination with antibiotics had a lower survival rate. The difference between 
these survival curves is significant, meaning that receiving ABT around the start of treatment is 
negatively impacting the survival outcome. This result, which is in line with the Chalabi et.al. findings, 
is potentially very relevant because choices for use of antibiotics during CIT could be adjusted to 
better meet patient needs.

As is often the case, these results trigger additional research questions where further investigation 
may lead to clinically actionable insights. The main questions are:

•  By varying the timepoints when antibiotics are used, what is the effect on overall survival?

The hypothesis is that antibiotics will have a negative effect on survival not just in the -30 to 30 days 
window used by Chalabi et al., but also at different timepoints. If this is the case, this knowledge 
becomes highly relevant for the clinic since the duration of the antibiotics course or the class of 
antibiotics can be altered.

•  If the time window between randomisation and start of the treatment increases, is there a 
negative effect on overall survival? 

The hypothesis is that if a patient is ill at randomisation then treatment will be postponed, meaning 
that patients with longer time between randomisation and the start of treatment may be more ill. 
If this is the case, the length of this window can be used as an indicator for lower overall survival.

Table 9: Antibiotic administration per NSCLC treatment arm

Drug class Nr. patients in docetaxel arm Nr. patients in atezolizumab arm

quinolone antibiotics 107 75

penicillin 69 71

cephalosporin antibiotics 55 35

macrolide antibiotics 26 26

carbapenem antibiotics 7 20

glycopeptide antibiotics 13 15

aminoglycoside antimicrobials 13 6

sulfonamides 4 11

lincomycin antibiotics 8 4

tetracyclines 8 6

miscellaneous antimicrobials 7 3

oxazolidinone antibiotics NA 5

http://et.al
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Figure	7:	Kaplan-Meier	survival	plot	showing	stratification	per	treatment	arm	and	 
antibiotic administration
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4   Applicability on real-world data needs responsible and 
explainable AI

To accelerate the use of personalized healthcare in the Netherlands, a series of milestones need to 
be reached. The current project serves as inspiration for how to use AI to make a clinically meaningful  
prediction model and treatment tool, it also yields learnings around the process to access and share 
data in a novel, multidisciplinary ecosystem. To leverage these results further, the model needs to 
be tested on real world data (RWD) from hospitals. Validation of a predictive model on RWD is 
necessary for the model to be adopted in the clinic, and when such a decision support tool is used 
by patients and physicians, the goal of personalized healthcare draws nearer.

Figure 8: Milestones needed to accelerate personalized healthcare

To pilot the current model in hospitals, a roadmap is needed to map the necessary actions. Based 
on current project learnings, the following are needed to validate the model in hospitals:

• Assess which features of the current model are available in the hospitals

• Clearly define the validation criteria to identify when the pilot is considered successful

•  Define when is the model performance acceptable and trade-offs (for example loss in prediction 
accuracy vs. increased explainability)

•  Define explainability criteria (for example, correlation analysis or reduced number of predictor 
variables)

•  Scope the groups of patients for whom the model could be used

•  Assess whether there is potential for bias in the way this model is built and applied, and what 
factors could mitigate it

Using machine learning and AI to support treatment decisions has important consequences for all 
the parties involved - patients, healthcare practitioners, and others. Therefore, it is increasingly 
necessary to ensure AI tools are used to help patients in a fair and responsible manner. With the 
help of PHC Alliance members, we have identified the following risks for bias:

•  Clinical trial exclusion criteria (the model development cohorts included only patients with ECOG 
performance score 0 or 1)

•  Potential language barriers 

•  Potentially the patients who enroll in clinical trials may be more proactive about their health, this 
may be correlated with socio-economic differences between patient groups

•  Current lack of patient perspective on the use of AI in treatment planning

Generate predictive model
using clinical trial data

Test model on real world
data in hospitals

Enable personalized treatments
& risk assessment
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An assessment of the model is performed to detect potential bias
While the framework for responsible AI and explainable AI is much wider, we hope to spark a 
discussion on practicing responsible AI when collecting data and building predictive models. To do 
this in our project, we started by assessing the inclusion and exclusion criteria of both OAK and 
POPLAR studies. According to the inclusion criteria, patients with ECOG score 0 or 1, older than 18 
years and with locally advanced or metastatic NSCLC were included in the studies. The exclusion 
criteria were cancer-specific (active or untreated central nervous system metastasis), general 
medical exclusions (recent pneumonitis), criteria related to docetaxel (prior docetaxel treatment), or 
criteria related to atezolizumab (history of autoimmune disease, CD137 agonists, anti- CTLA4, 
anti-PD-L1, or anti-PD-1 therapeutic antibodies, or PD-L1-PD-1 pathway-targeting agents). Next, we 
assessed whether there are sensitive groups that require special consideration - these groups may 
typically be based on race, sex, age, or socio-economic status. For a model to be applied 
successfully in real life, it needs to be developed on cohorts that are representative of the wider 
population where the model will be used. 

One of the factors that may impact applicability are ethnic factors, defined by the European 
Medicine Agency (EMA) as factors relating to the genetic, physiologic, cultural and environmental 
characteristics of a population14. Notably, the OAK study (phase III) already satisfies a standard EMA 
requirement to enroll patients of different ethnicities in phase III studies15. To assess whether the 
population in the studies and the wider Dutch population are similar, we compared the race 
distribution in the OAK & POPLAR cohorts with national figures from the Central Bureau of Statistic 
(CBS) since race is one of the components of ethnicity. Based on such an assessment, health care 
professionals may decide whether a model is applicable to specific patients. According to the CBS, 
23.6% of the population in the Netherlands has a migration background16. For this assessment, we 
assume that all residents with a migration background are non-Caucasian although in fact this is not 
the case. Furthermore, we assume that everybody in the Netherlands who has a non-migration 
background is Caucasian. 

This assumption is also too generic because there are non-Caucasian people in the Netherlands 
living here for several generations. These assumptions are used for illustrative purposes based on 
census data available at this time. To estimate if our test population is representative of the Dutch 
population, we calculated the percentage of non-Caucasian patients in the cohort. For OAK and 
POPLAR this is 28.7%, indicating the clinical cohorts have a similar distribution to the wider 
population. To identify potential bias in our model results, we tested whether the OS model 
predictions are biased towards the Caucasian race, meaning that the model would perform better 
when predicting outcomes for Caucasian patients. Therefore, we analyzed how often the OS model 
makes correct predictions for Caucasian vs. non-Caucasian patients and found that model accuracy 
for non-Caucasian is 78,5% and accuracy for Caucasian is 71%. Using a Pearson Chi-square Test, we 
found that this difference is not statistically significant (p = 0.26), therefore based on available data 
the model does not perform differently for different races and thus may have good applicability to 
cohorts with diverse racial backgrounds.
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Appendix A: Data Access Journey

« 2.2 DATA ACCESS

1. Proposal

Initial plan Data Hackathon to generate predictive model for CIT outcomes NSCLC patients

Proposal approved and funded by Global PDMA PHC team

2. Journey

Preferred 3rd party for preparation & setting up data hackathon event: Accenture 

Contracts/ Statement of Work with Accenture

Discussion about NIS

3. Data

Reach out to internal data sources

Access to Roche data initially a no go from RWD Collaborations PHC Data Science

Flatiron data a no go from Academic Partnerships/ Network operations and Life Sciences

List with important atezolizumab studies which potentially could serve the data analysis

For logistical purpose focus on 2 clinical studies: OAK & POPLAR

Biometric MGT & SWAT team objections regarding data access (IT/IP/3rd party competencies)

Direct contact with Tecentriq Lung Lifecycle Team Meeting Genetech

Aug 20th 2019: approval for use of OAK and POPLAR limited datasets

Clarification which OAK/POPLAR data can be used for analysis

Data available - PDMA will assist in transfer data to IT environment accessible to Accenture

4. Contracts/ IP/ IT settings

Plan for data hackathon, i.e. data mining with combined data is a no go

Solution: virtual dataroom

Decision on legal requirements that need to be in place

IT settings between Roche Global and Accenture are in place

5. Data analysis in dataroom

Data preparation & clean by Accenture

Feature engineering, model build, fine tuning

Project meeting with Roche, Accenture and Alliance members

Report on final model

Report on data analysis outcome

Action plan to validate algorithm in each hospital (RadboudUMC, ErasmusMC, Santeon)

First model validation in one of the hospitals
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Steps NotesTimeline

Global PDMA Data Sharing Team.

Originally 9 studies were used for internal RAAD data challenge Feb 2019.

MGT & SWAT team - Program Management PDP Business Operations Product 
Development, Personalized Healthcare.

Reasons include lack of control over model outcomes.

Decision that Accenture would access data sets. Data is already anonymized so tasks 
to be described in SoW. Researchers analyzing data sets in dataroom: DVO type of 
contract.

Based on Roche data, Flatiron data, hospital data using Machine Learning algorithm.

Advised by Roche Global PDMA PHC.

Time consuming process (Oct 2018 - first draft available).

Unexpected discussion. Use of 2nd data initiated by Region Europe Disease Area 
Medical Lead PHC2.0 &CIT Pharmaceuticals Division took 2 months. Boomerang 
discussions without a clear conclusion. Finally overruled by local medical director.

More detailed information is available and can be requested via info@phc-catalyst.nl

mailto:info@phc-catalyst.nl
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Appendix B: Modelling Approach

This is a supervised machine learning (SML) problem
•  Predict PFS at 3 months from baseline

•  Predict OS at 2 years from baseline

The output of the SML model is a probability
Information about all the features is combined into the model, which is then used to predict per 
person the probability of the outcome (OS and PFS, respectively)

Modelling approach
Modelling options can be explored to select the optimal predictive model for the given scope.
The options include:
1. Model with features directly correlated with the target
2. Model with clustered features
3. Ensemble model

Different algorithms will be tested for each modelling option. These include:

•  Random forest

•  XGBoost

•  GBM

More detailed information is available and can be requested via info@phc-catalyst.nl
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Appendix C: Modelling Variables

The missing value treatment per variable will be included together with the source file (to be 
included).

1 Age AGE Age asl both

2 Gender SEX Sex asl both

3 Race RACE Race asl both

4 Tumor type (squamous vs non-squamous) HIST Pathology/Histology (squamous vs. non-squamous) asl both

5 Raw PD-L1 scores TC TC Raw Score asl both

6 Raw PD-L1 scores IC IC Raw Score asl both

7 PD-L1 scores TCLEVEL TC Score (0 to 3) asl both

8 PD-L1 scores ICLVL1 IC Score (0 to 3) asl oak

9 PD-L1 scores IHCLEVEL IC Score (0 to 3) asl poplar

10 ECOG performance status ECOGGR ECOG Performance Score asl both

11 BMI BBMI Baseline Body Mass Index (kg/m2) asl both

12 Weight BWT Baseline Weight asl both

13 Stage CASTG Stage of Initial Diagnosis asl both

14 Time since diagnosis XDXDY Date of Initial NSCLC Diagnosis asl both

15 Nr. of prior treatments PRIORTXC Prior Therapies per IxRS asl oak

16 Nr. of prior treatments PRIORTX Prior Therapies per IxRS asl poplar

17 EGFR mutations EGFRMUT EGFR Mutation Status asl both

18 KRAS mutations KRASMUT KRAS Mutation Status asl both

19 ALK mutations EMLAMUT EMLA-ALK Mutation Status asl poplar

20 ALK mutations EML4MUT EML4-ALK Rearrangement Status asl oak

21 Tobacco use history TOBHX Tobacco Use History asl both

22 Metastasis METSITES Number of Metastatic Sites at Enrollment asl both

23 Metastasis BONE Bone Metastasis at Enrollment asl both

24 Metastasis BRAIN Brain Metastasis at Enrollment asl both

25 Metastasis PEFF Pleural Effusion Metastasis at Enroll asl both

26 Metastasis LUNG Lung Metastasis at Enrollment asl both

27 Metastasis LIVER Liver Metastasis at Enrollment asl both

28 Medical history MHSEQ Sequence Number of Medical History Event amh both

29 Medical history MHLLT Lowest Level Term amh both

30 Medical history MHSOC Primary System Organ Class amh both

31 Medical history MHSTDY Study Day of Start of History Event amh both

32 Baseline protein levels including albumin PARAM Parameter Description alb both

33 Lab results VISITNUM Visit Number alb both

34 Lab results VISIT Visit Name alb both

35 Comedication dose CMDOSE Dose per Administration acm both

36 Comedication at baseline CMCLAS Medication Class acm both

37 Vital signs PULSE Pulse avs both

Nr. Function to be mapped Variable Meaning Table Cohort

More detailed information is available and can be requested via info@phc-catalyst.nl

« 3.2 STEP II

mailto:info@phc-catalyst.nl
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Appendix D: OS Model Report

To evaluate the predictive model, we assess the overall performance and the sensitivity and 
specificity. Sensitivity indicates the percentage of patients correctly predicted by the model to be 
alive at 2 years and specificity is the percentage of patients correctly predicted not to be alive. 

As seen in the modelling approach (Appendix B), the result of a supervised machine learning model 
is a probability. Since we are predicting an outcome with two possibilities (patient is alive or not), we 
are making a binary classification. This means that for every new patient where we use the model to 
make a prediction, the probability returned will be classified as either 0 or 1. When the threshold is 
set at 0.5, any patient predicted by the model to have probability of survival > 0.5 will be classified as 
1, the other patients will be classified as 0. If we change the threshold to 0.4 for example, the 
patients with probability of survival 0.45 will be classified as 1 and those with probabilities lower than 
0.4 will be classified as 0.

Distribution of the probabilities that a patient did survive 

At a standard threshold of 0.5, the sensitivity in the confusion matrix is low (0.41) indicating our 
model underperforms in predicting the less frequent class (the patients that did survive). Normally, 
a threshold of 0.5 is used when the probability of the outcome is normally distributed between 0 
and 1. However, this is not the case in the OAK & POPLAR cohorts since we know most of these 
patients do not survive. By plotting the histogram of probabilities that a patient survives (Fig.9), we 
see this distribution is heavily skewed towards the left, with most distributions in the range between 
0 and 0.7. By adjusting the threshold to 0.35, both classes of patients - those predicted to be alive 
and those who are not - are well represented and the model has better sensitivity (0.67) and 
specificity (0.76). By keeping the threshold at 0.35 for all OS models, different models can be 
compared against each other. 

More detailed information is available and can be requested via info@phc-catalyst.nl

mailto:info@phc-catalyst.nl
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Appendix E: PFS Model Report

More detailed information is available and can be requested via info@phc-catalyst.nl

mailto:info@phc-catalyst.nl
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Appendix F: Antibiotic Analysis

More detailed information is available and can be requested via info@phc-catalyst.nl

mailto:info@phc-catalyst.nl
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Appendix G: Correlation Analysis

The correlation matrices between all variables with non-zero variance with PFS, OS and ordered 
matrices between targets and all variables is available.
 
For a visual overview of the matrices above, correlation plots clustered hierarchically are available 
for each of the data sources, per OS and PFS. The treatment response is not included here because 
this dataset is only used to define the targets. 
 ASL – subject level analysis (basic patient characteristics)
 ACM – comedication
 ALB – lab values
 AMH – medical history
 AVS – vital signs

More detailed information is available and can be requested via info@phc-catalyst.nl

« 3.2 STEP II

mailto:info@phc-catalyst.nl
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